

Encoders

magnetic Encoder, digital outputs, 2 channels, 16 lines per revolution

For combination with DC-Micromotors

Series IE2-16

		IE2-16	
Lines per revolution	Ν	16	
Frequency range, up to 1)	f	7	kHz
Signal output, square wave		2	Channels
Supply voltage	U_{DD}	4 18	V
Current consumption, typical 2)	I DD	typ. 6, max. 12	mA
Output current, max. 3)	І оит	15	mA
Phase shift, channel A to B	Φ	90 ± 45	°e
Signal rise/fall time, max. (CLOAD = 100 pF)	tr/tf	2,5 / 0,3	μs
Inertia of sensor magnet	J	0,11	gcm ²
Operating temperature range		-25 +85	°C

³⁾ Tested at 2 kHz

Fau as making stien swith BAs	4		
For combination with Mo		Dimensional drawing C	.l.4. [mama]
Dimensional drawing A	<l1 [mm]<="" td=""><td>Dimensional drawing C</td><td><l1 [mm]<="" td=""></l1></td></l1>	Dimensional drawing C	<l1 [mm]<="" td=""></l1>
1336 CXR - 123	47,5	1727 CXR - 123	38,2
		1741 CXR - 123	52,2
Dimensional drawing B	<l1 [mm]<="" td=""><td></td><td></td></l1>		
1516 SR	18,2		
1524 SR	26,2		
1717 SR	19,4		
1724 SR	26,4		
2224 SR	26,6		
2232 SR	34,6		
2232 511	34,0		

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm!

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

To view our large range of accessory parts, please refer to the "Accessories" chapter.

¹⁾ Velocity (min-1) = $f(Hz) \times 60/N$

²⁾ $U_{DD} = 5$ V: with unloaded outputs

Circuit diagram / Output signals

Output circuit

* An additional external pull-up resistor can be added to improve the rise time.

Caution: I_{OUT} max. 15 mA must not be exceeded!

Output signals

with clockwise rotation as seen from the shaft end

Angle

Connector information / Variants

No.	Function
1	Motor –
2	Motor +
3	GND
4	Udd
5	Channel B
6	Channel A

Connection Encoder

Cable

PVC-ribbon cable 6-conductors, 0,09 mm²

Connector

DIN-41651 grid 2,54 mm

Full product description

Example:

1336U012CXR-123 IE2-16 1516T006SR IE2-16

